Vocabulary

Review

1. Circle the graph that shows a periodic function.

![Graphs showing periodic functions]

Vocabulary Builder

sine (noun) syn

Related Words: sine function (noun), sine curve (noun), cosine (noun)

Definition: If the terminal side of an angle θ in standard position intersects the unit circle at the point (x, y), then the **sine** of θ is the y-coordinate of the point (x, y).

In Symbols: $\sin \theta$

Use Your Vocabulary

2. Circle the sine of each angle θ.

![Graphs with points on the unit circle]

-1 $\frac{-1}{2}$ $\frac{\sqrt{3}}{2}$ 1

-1 1

-1 $\frac{-\sqrt{2}}{2}$ $\frac{\sqrt{2}}{2}$ 1
Problem 1 Estimating Sine Values Graphically

Got It? What is a reasonable estimate for the value \(\sin \theta \) from the graph? Check your estimate with a calculator.

3. Circle the \(\theta \)-value that is closest to \(\theta = 3 \).

\[
\begin{array}{cccc}
0 & \frac{\pi}{2} & \pi \\
\end{array}
\]

4. The value of \(y = \sin \theta \) at your chosen \(\theta \)-value is \(\boxed{ } \).

5. Circle the best estimate of \(\sin 3 \).

\[
\begin{array}{cccc}
0 & 0.01 & 0.1 & 1 & \frac{\pi}{3} & \frac{\pi}{2} \\
\end{array}
\]

6. Check Use a calculator in radian mode to check your estimate: \(\sin 3 \approx \boxed{ } \).

The graph of the sine function is called a sine curve.

Problem 2 Finding the Period of a Sine Curve

Got It? How many cycles occur in the graph? What is the period of the cycle?

7. Circle each cycle in the graph. There are \(\boxed{ } \) cycles.

8. To find the period of one cycle, divide the length of the interval by the number of cycles. Cross out the expressions that do NOT give the period.

\[
\begin{array}{ccc}
2\pi & 4\pi & 4\pi \\
\div 2 & \div 2 & \div 4 \\
\end{array}
\]

9. The period is \(\boxed{ } \).

Problem 3 Finding the Amplitude of a Sine Curve

Got It? The equation of the graph is of the form \(y = a \sin x \). What is the amplitude of the sine curve? What is the value of \(a \)?

10. Underline the correct words to complete each sentence.

 The amplitude of a periodic function is \boxed{ } the difference / half the difference of the maximum and the minimum values.

 Because the first cycle begins below the \(x \)-axis, the value of \(a \) in the sine curve at the right is \boxed{ } positive / negative .

11. Use the graph at the right. Find the amplitude of the sine curve.

12. The amplitude is \(\boxed{ } \), and the value of \(a \) is \(\boxed{ } \).
Suppose \(y = a \sin b \theta \), with \(a \neq 0 \), and \(\theta \) in radians.
- \(|a|\) is the amplitude of the function.
- \(b \) is the number of cycles in the interval from 0 to \(2\pi \).
- \(\frac{2\pi}{b} \) is the period of the function.

13. Identify the amplitude, number of cycles, and period of \(y = -\sin \frac{1}{2} \theta \).
 amplitude = \[\boxed{\text{number of cycles} = \boxed{\text{period} = \boxed{}}} \]

14. Underline the correct word or number to complete each sentence.
 The amplitude is 3, so the maximum is \[-4 / -3 / 0 / 3 / 4 \] and the minimum is \[-4 / -3 / 0 / 3 / 4 \].
 Since \(a > 0 \), the maximum value occurs before / after the minimum value.

15. Complete the table.

<table>
<thead>
<tr>
<th>Zero</th>
<th>Max</th>
<th>Zero</th>
<th>Min</th>
<th>Zero</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>beginning of cycle</td>
<td>middle of the first half</td>
<td>middle of whole cycle</td>
<td>middle of the second half</td>
<td>end of cycle</td>
</tr>
<tr>
<td>(0, 0)</td>
<td>((\pi,))</td>
<td>(2(\pi,))</td>
<td>()</td>
<td>()</td>
</tr>
</tbody>
</table>

16. Use the ordered pairs from the table to graph one cycle of the sine curve on the coordinate plane.

17. Since \(4\pi = \frac{2\pi}{b} \), \(b = \boxed{\text{}} \).

18. An equation for the function is \(y = \boxed{\sin \theta} \).
Lesson 13-4

Got It? What is the graph of one cycle of the sine function \(y = 1.5 \sin 2\theta \)?

19. Write the value of each variable or expression.
\[
\begin{align*}
 a &= \quad b &= \quad \frac{2\pi}{b} = \quad \frac{2\pi}{1.5} = \\
 \quad &= \quad &= \\
\end{align*}
\]

20. One cycle runs from 0 to \(\frac{\pi}{4} / \frac{\pi}{2} / \pi / 2\pi \).

21. Graph one cycle of \(y = 1.5 \sin 2\theta \) on the coordinate plane.

Lesson Check • Do you UNDERSTAND?

Error Analysis A student drew this graph for the function \(y = -3 \sin \pi \theta \). Describe and correct the student’s error.

22. Cross out the statements that do NOT describe the graph of \(y = -3 \sin \pi \theta \).

\[
\begin{align*}
 a > 0 & \quad \text{The period is 2.} & \quad \text{The amplitude is} & \quad -3. \\
 a < 0 & \quad \text{The period is} & \quad \text{The amplitude is} & \quad 3. \\
\end{align*}
\]

23. Describe the student’s error.

24. Circle the graph of \(y = -3 \sin \pi \theta \).

Math Success

Check off the vocabulary words that you understand.

- [] sine function - [] sine curve - [] periodic function - [] amplitude

Rate how well you can graph a sine function.

Need to review 0 2 4 6 8 10 Now I get it!